Adults with Type 2 Diabetes Mellitus and Hypertension and Obesity: Prevalence and Distinguishing Characteristics

${ }^{1}$ Susan Grandy, ${ }^{2}$ Kathleen M. Fox, for the SHIELD Study Group
${ }^{1}$ AstraZeneca LP, Wilmington, DE; ²Strategic Healthcare Solutions, LLC, Monkton, MD

BACKGROUND

- It is well documented that diabetes is a prevalent and costy disease
- Adults with type 2 diabetes mellitus are likely to have other health - Aduuts wint type 2 diabetes melifitus are ilikely to have other hearth
conditions that may adversely impact their health status and glycemic
controlsit
- Hypertension, obesity, cigarette smoking, and hyperipidemia act
independent modifiable contributors to CovD in patients with diabetes ${ }^{5}$
- Current ADA standards of medical care aim to reduce the vascular complications through control of glycemia, blood pressure, and
blood lioids ${ }^{6}$ However little attention has beed blood lipids. ${ }^{6}$ However, little attention has been paid to identitying
and characterizing individuals with T2DM and hypertension and and chara
obesity

OBJECTIVE

To estimate the prevalence of self-reported T2DM with HTN and obesily and compare these indivicualus with adults with T2DM alon

METHODS

Study design

- Cross-sectional analysis among SHIELD respondents with T2DM with or
study to Help Improve Early evaluation and management of risk factor Leading to Diabetes (SHHELD), a 5 -year population-based surve conducted to better understand the risk for the development of diabetes - Based upon a screening questionnaire mailed to 200,000 nationally representative households, responses for 211,097 adults from
127,420 households were obtained (64\% response rate)
A baseline survey was sent to 02,001 selected individuals derived rom the screening respondents. Since 2005 , annual SHIELD surveys and behavivirs, uuality of life, and anthriopometry from this
representative sample of the US population epresentative sample of the US population
The 2008 survey collected information from 14,92 individuals
71% response rate) to todentify those with the triad conditions (T2DM, HTN, obesity)

METHODS (Continued)

STUDY POPULATION

- Respondents were 18 years of age or older
- Self-reported diagnosis of T2DM was based on being "told by a doctor,
nurse or other heathcare professional that you have type 2 diabetes"
- Among the T2DM sample, two cohorts were identified:

Those reporting comorbid HTN and obesity
Those without a self-report of HTN and obesity

Study Measures

- Respondents reported a diagnosis of HTN based on being told by
healthcare professional that they had high blood pressure or HTN
- Obesity was defined as a $\mathrm{BMI} \geq 30 \mathrm{~kg} / \mathrm{m}^{2}$
- Respondents had to have a self-reported diagnosis of T2DM and HTN and
 with a sel--reported diagnosis of T2DD and no self-reported diagnosi
HTN and BMI <30 kg/ m^{2} were classified into the T2DM alone group
- Comorbid conditions were self-reported based on survey questions of being told by a healthcare professional that they had the condition statistical analyses
- Comparisons between the triad condition group and the T2DM alone group
were conducted using chi-square test for categorical variables and t tests were conducted using chi-s
- Statistical significance was set a priori is $\mathrm{p}<0.0$

RESULTS

Prevalence of T2DM, hypertension, anc obesity Figure 1. SHIELD respondents with T2DM and other comorbid conditions

RESULTS (Continued)

There were 3,000 respondents with T T2DM regardless of other heath Conditions
Figure 1). Subgroups are mutually exclusive

- $47.8 \%(\mathrm{n}=1,434)$ of these respondents also had HTN and were obese, thus, the triad conditions were prevalent
- 12.8% ($\mathrm{n}=383$) of these respondents had T2DM alone
- Respondents with either HTN or obesity, but not in combination, were not

For 63 respondents*, a BMI could not be calculated because missing data; these respondents were excluded from the analysis
a pean Mean age was 61.4 years for respondents with the triad conditions
and 66.2 years for respondents with $T 2 D M$ alone $(p<0.01)$

Figure 2. Demographic characteristics of respondents with triad conditions or T2DM alone

Trona aione

p<0.01
Respondents with the triad conditions were younger, more often women, ($p<0.01$) (Figure 2)

- Respondents with the triad conditions were simiar to respondents with

Mean number of comorbid condititions, excluding T2DM, HTN, and obesity, was 5.6 conditions for respondents with the triad conditions and 4.0 conditions for respondents with T2DM alone ($p<0.01$)

${ }^{*} p<0.01$

- More respondents with the triad conditions had dysinidemia than respor dents with T2DM alone ($p<0.01$) (Figure 3)
- Respondents with the tiriad conditions were similiar $(p>0.05)$ to respondents narrow or blocked arteries, and stroke or TIA
Figure 4. Diabetes complications among respondents with the triad conditions or T2DM alone

More espondents with the triad conditions had neuropathy than respondents with T2DM alone ($p<0.001$) (Figure 4)

- Respondents with the triad conditions were similar ($p>0.05$) to respondents
with $T 2 D M$ alone in self-reported retinopathy and LIMITATIONS
- Diagnosis of diabetes, , HTN, other comorbid conditions or complications,
and wieght were self-reported and could not te validatated with medical and weight were self-reported and could not be velicated with medicial
recordd review or administrative claims data. However, this bias is similar between the groups compared in this study
Household panels, like the SHIELD study, tend to under--represent the very wealthy and very poor segments of the population and do not include military or institutionalized individuals

SUMMARY

Prevalence of T2DM with both HTN and obesity was very high, almost 50%

- Respondents with the trid of conditions were distion Tesponderis with
- Respondents with the triad of conditions may be candidates for compreReferences
References

1. King He, tal. Diabetes Care 1998;21:1414-1431
2. King H, et al. Diabetes Care 1998;21:141
3. Saydah SH, et al. JAMA 2004;291:335-3
4. Grant RW, et al. Diab Med $2004 ; 21: 1150-155$ 5. Grundy SM, et al. Circulation 1999;100:1134-1146
5. ADA. Standards of Care. Diabetes Care 2010;33(Supp 1):S11-S61

LIST OF ABBREVIATIONS

```
ADA American Diabetes Associat
Body mass intex亚 Ass
Cyymovascular disease
Study to Help Improve Early vvaluation and management
Of risk factors Leading to Diabets
```

of fisk factors Leading to
Type diabetes mellitus
The
TIA
Transient
Tischemic attack

This research was supported by funds from Astrazeneca LP

